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PFUIJECTIVE-SYMMETRIC SPACES* 

R. F. Reynolds and A. H. Thampson 

m c t i q .  

Gy. Soor [ l ]  and B. Gupta [2 ]  have dircussed the properties 

of Riemannian spaces Vn ( ~ 2 )  in which the first covariant deri-  

vat ive of Weyl's project ive curvature tensor is everywhere zero; such 

spaces they c a l l  Pro.lective-Smnnetric spaces. In t h i s  paper we wish 

t o  point out t ha t  a l l  Riemannian spaces w i t h  thin property are 

symmetric in the sense of Cartan [3] ;  tha t  is t h e  first covariant 

der ivat ive of the Riemann curvature tensor of the space vanisher. 

Further sections are  devoted t o  a discussion of projective-symmetric 

a f f ine  spaces A,, w i t h  oymmetric a f f ine  connexion. Throughout, the 

geometrical quant i t ies  discuared w i l l  be as defined by Eisenhart [4] 

and [ 5 ] .  

1. g r o l e c t i  ve-SvrPnretric Riemannirn Spaces. 

For a vn , weyl'r projective curvature tensor Wabcd i s  

a a 2 a 
bcd bcd ox [d %]b} @ 
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tensor, of the space. The Vn Is a projective-symetrlc space i f  

and only If 

a - 0. bcd;e 

a We define the tensor U by 

a 
where 

proj ective-synnnetrlc, then 

R = R a , and from (1.1) It follows tha t  I f  the space I s  

a 
= 0 .  d;e 

For n>2, equation (1.2) and the twlca-contracted Blunchl Ident i ty  

and thus w e  have R a b t e  = 0. With (1.1) t h i s  gives the r e su l t  

wabcd;e< > R a  bcd;e - 0 9  

from which follows:- 

Theorem 1. v 

- A Riemannian space Vn ( ~ 2 )  l e  a projective-symmetric apace 

i f  and only if it l a  eyrmnetric i n  the eense of Cartan [3].  -- 
a 

For n 2,  w bcd I s  ident ical ly  zero and (1.1) l e  a degene- 

rate condition in  a V2. We ramark however tha t  a V2 l e  a eymmetrlc 
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space if snd only if it has constant scalar curvature R. 

The results of Gupta [2] follow immediately since they are 

trivially true for synrnetric spaces. The paper of Soos [2] contains 

theorems for projective-symmetric spaces which are generalisations of 

results found by Sinjukaw [6] for symmetric spaces. 

Affine SDacea With m x i o n .  2. - 
For the remainder of this paper we consider the application 

of the preceding theorem tn 8n Affine space with rymetric connexion. 

Such a space we will denote by 

covariant dif ferentiation with respect to this connexion by 

a An, its connexion by I' bc, and 
" ;" . 

The curvature tensor of A is defined n 

a h a 
bcd 2rab[d,c] + 2r b[d I' c]h ' 

for which the identities 

and Bianchi's identity 

hold. The analogue of the Ricci tensor for an An is Bbc = Babca, 

but in this care it ir not necessarily rymmetric; it follows from 

(2.2) that 

h e r e  scd = Baaed. From (2.3) we have also 



- 0 ,  [cd;eI 
S 

( 2 . 5 )  
a 
bcd;a 2Bb[c;d] ' 

Weyl's projective curvature tensor for an An is 

(2.6) Wabcd Ba - -  1 0 -  2 B  da  -- s 6a 
bed n+l *ab 'cd n-1 b[c  d] *2-1 b[c dl 

This tensor is invariant for  projective transformations of the space 

and i t s  vanishing implies tha t  the A has the same pathe as f l a t  

space [ 5 ] .  By sproiective-eynnnetric a f f ine  space we w i l l  mean an 

A, ( ~ 2 )  such tha t  

n 

Wa = 0 ,  bcd;e (2.7) 

throughout; an A is # m e t r i c  [3] i f  and only i f  n 

(2.8) Ba bcd;e - 0 ,  

at  ail polsitc. 

1 
Equation (2.8) implies that every symmetric An is a projec- 

t ive-symetr ic  A . Such projective-symmetric spaces we w i l l  c a l l  

degenerate, and from Beortag 1 we see tha t  a l l  projective-syrmaetric 

Riemannian epacss V (n72) are  degenerate i n  t h i s  sense. We w i l l  

show tha t  t h i s  is not t rue  for  a general An and w i l l  coneider i t s  

va l id i ty  in re la t ion  t o  cer ta in  sub-claores of Affine spaces. 

n 

n 

3. Noa-Doneaerate Prolective-Synnnetric 4. 

Conrider the 41 with connexion coeff ic ients  
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(3.1) 

a 
i n  a coordinate system {x 1 such that  

The latter condition i s  expressed covariantly as 

The 41 
t u r e  tenror  vanishes and therefore it  is a projective-symmetric 

space. From (2.1) we have f o r  t h i s  An 

i s  project ively re la ted  t o  f l a t  space; i t s  project ive curva- 

and using (3.2) 

For 

have the r e s u l t  :- 

$, # 0, the  curvature tensor of the space i e  non-zero and we 

Theorem 2. - 
-- There exirt  prolrctive-symmetric & ' a  which are non-degenerate. 

3. The Decomposable %. - 
If two spaces and &lp are  given with coordinate8 

a A 
x : (a,@,y = 1,2,...,m) and x : (A,B,C = Wl,...,n) and the connexlons 

then the & with coordinates x : (a,b,c - l,Z,...,n) a 
and A BC, 



a 
A 1, Is ca l led  the  product of Am a 

By' BC and connexion r bc z U 
and %-. An An t ha t  ir a product space is sa id  t o  be decomposable. 

A geometric object in a decomposable 

if i t s  components with respect t o  the spec ia l  coordinates are always 

zero when they have indices from both ranges, and the  components 

belonging t o  the rubspace A, (h-) are functions of x (x ) only. 

I n  a decomposable %, B bcdp BbC and t h e i r  covariant derivatives 

are decomposable; w bed and w bcdie are not i n  general decomposable. 

An is decomposable i f  and only 

a A  

a 

a a 

Theorem 3. 
1 

- A projective-symmetric which is decompoeable is neces- 

s a r i  ly degenerate . 
We (USUPLO t h a t  5 {hX 4-1 

relate t o  pt,, and A,B,C - u+l,....n relate t o  From the  

def in i t ion  of the  projective-curvature tensor we have f o r  

posable An. 

where indices a ,$ ,y  - l....m 

the decom- 

and 

(3.2) 

The assumption tha t  % is a projective-symmetric space gives with (3.1) 

and therefore in (3.2) 
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Similarly w e  have 

and s in@ Bbd;e is a decomposable tensor of t he  % it  follows tha t  

%d;e = 0 .  

With the  above, the  d i f fe ren t ia t ion  of (2.5) gives 

a a * = bcd;e bcd;e 

and t h e  decomposable 4 is a aymet r i c  space. 

4. 111 The proSectIve-Smmetric gn. 

An A,, i n  which there  ex is t s  a rynnnetric two index tensor 

gat, of rank n such tha t  

f o r  same covariant vector oc is cal led a Wn and was f i r s t  discussed 
ab ab a 

by Weyl [7].  Define the  contravariant tensor g by g gbc = 6 c' 

then from (4.1) 

(4.1) 
ab ab 

g ; c  = 20c 8 

ab 
We can uae gab (g ) t o  define 8 correspondence between covariant 

and contravariant quant i t ies  i n  A,,; i n  f ac t  i f  Oc is a gradient 



and 

bc 
(4.3) Qad Babcd 

.. 

vector  0 the  Wn is a Riemannian space Vn w i t h  metric tensor  
*c - 20 

= e gab' 
e we def ine  With 'abed 8ae "bed and Babcd Iae bed* 

(4.2) 

From the Ricci I d e n t i t y  applied t o  gab* and the use of (4.1) and 

(4.la) w e  have 

(ab) cd = -2 gab $[c;d] * 

which y i e lds  a f t e r  cont rac t ion  

Qad - Bad O4 4[a;d] * 

and 

'2n4[c;d] 

We e x t r a c t  the symmetric and anti-symmetric pa r t8  of theoe equations 

t o  obta in  

(4.4) B[adl * "+[a;d] * 

Ql.4 (n-4) + [a; d] 

With equation (4.2), t h e  de f in i t i on  of the p ro jec t ive  curvature tensor  
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gives 

bc bc 
where B = g Bbc - 8 Qbco Frequent use of the relations 

(2.4) and (4.4) give the decomposition( 

n2-4 
B[ab] .) 

T[abl n(n-1) 

Lemma 1. - 
-- In a grolective-symmetric Wn ( m 2 )  Tab;= - 0 .  

Proof . - 
ef d d ef 

Tab ; c gad g efb;c 4- 8ad;c b + 8 ;c 'aefb a 

From (4.1) and (4.la) the sun sf the second and third terms on the 

right hand side of the above equation is zero. Hence 

ef d 
Tab ; c gad 8 efb;c B 

which vanirhar if Wn is projective-symmetric. Q.E.D. 

7 L e m a  1 applied to the second equation of (4.5) gives 

and with (4.6) in the first equation of (4.5) 
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n3rcmf* 
We have 

2 
Bb[c;d] 0 -  

n-2 -- a a * bcd;a bcd;a n2-1 Scd;b n-l 

From (2.3) end (4.6) S,d;e = 0, and we see t h a t  

a 2 
Bb[c;d] bcd;a n-l I -  

However from the  contracted Biaachi Ident f ty  (2,5) we have 

a 
bcd;a 2Bb[c;d] * 

and t h e  r e su l t  of the lema follows. 

From lemma 2 and (4.7) we have 

and a f t e r  contraction 

Referring t o  equation (4.7) we deduce t h a t  Bab;c 0 ,  and there'fore 

f o r  a Wn 

0 I) Wabcd;e < - 0. 
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Theoreq 4, 

Every poiactive-symmetric Wn & degenerate. 

We also remark that i f  B # 0 i n  ( 4 . 3 )  then $c is neces- 

sarily a gradient:. 

Theorem 5, 
P 

-- The "scalar curvature" B of a prod ective-symmetric Wn which 

is  not a Riemannian space i s  neceraarily zero. --- 
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